Construction of surface spline interpolants of scattered data over finite domains
نویسنده
چکیده
A numcncal methodfor smooth interpolation oj scattered data over afinite two dimensional domain Q is presented The interpolating function is defined by minimizatwn of a Dinchlettype intégral oj order ^ 2 over Q, nieasuring the rougîmes s oj the surface The case cor r esponding to Q = R results in the so-called « thin plate » sphne A Ritz-type method for approximating the fimte domain interpolating surface sphne is de\eloped, based on a set of basis functions including the fundamental «thin plate» sphne s Numencal experiment s are appended, demonsti ating the réduction of the rougîmes s measure as compared to that of the «thin plate» sphne Résumé — On presente une methode numérique pour l'interpolation de données irrégulièrement réparties sur un domaine fini bidimenswnnel Q par une surface régulière La fonction d'interpolation est définie par minimisatwn d'une intégrale du type de Dirichlet, d'onde ^ 2, sur Q., qui mesure la qualité de l'approximation de la surface Le cas oùQ. = i^ correspond aux splines de type « plaque mince » On élabore une methode de Ritz pour approcher la surface sphne d'interpolation dans le cas d'un domaine fini, basée sur un ensemble de fonctions de base comprenant les splines fondamentales du type « plaque mince » On inclut des résultats numériques, qui mettent en évidence la réduction du défaut d'approximation par rapport a celui de la sphne du type « plaque mince »
منابع مشابه
Quasi-interpolants Based Multilevel B-Spline Surface Reconstruction from Scattered Data
This paper presents a new fast and local method of 3D surface reconstruction for scattered data. The algorithm makes use of quasiinterpolants to compute the control points from a coarse to fine hierarchy to generate a sequence of bicubic B-spline functions whose sum approaches to the desired interpolation function. Quasi-interpolants gives a procedure for deriving local spline approximation met...
متن کاملNumerical integration using spline quasi-interpolants
In this paper, quadratic rules for obtaining approximate solution of definite integrals as well as single and double integrals using spline quasi-interpolants will be illustrated. The method is applied to a few test examples to illustrate the accuracy and the implementation of the method.
متن کاملMultivariate normalized Powell-Sabin B-splines and quasi-interpolants
We present the construction of a multivariate normalized B-spline basis for the quadratic C-continuous spline space defined over a triangulation in R (s ≥ 1) with a generalized Powell-Sabin refinement. The basis functions have a local support, they are nonnegative, and they form a partition of unity. The construction can be interpreted geometrically as the determination of a set of s-simplices ...
متن کاملNonnegativity preserving macro-element interpolation of scattered data
Nonnegative bivariate interpolants to scattered data are constructed using some C macro-element spline spaces. The methods are local, and rely on adjusting gradients at the data points to insure nonnegativity of the spline when the original data is nonnegative. More general range-restricted interpolation is also considered.
متن کاملRecent Advances in the Construction of Polygonal Finite Element Interpolants
This paper is an overview of recent developments in the construction of finite element interpolants, which are C-conforming on polygonal domains. In 1975, Wachspress proposed a general method for constructing finite element shape functions on convex polygons. Only recently has renewed interest in such interpolants surfaced in various disciplines including: geometric modeling, computer graphics,...
متن کامل